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Polypropylene tubes with highly oriented molecular structures induced by die-drawing have been 
tested at various axial/hoop stress ratios to study the first quadrant (tensile-tensile) failure surface 
with particular regard to the effect of draw ratio. The experimental tests have been conducted on 
a flexible test rig designed for testing flat sheet and tube under different loading conditions whilst 
controlling the applied strain rate to within 120-200 s-1. A microcomputer-based system has 
been developed to control the test and automatically log the data. The experimental results are 
compared with the predictions of the available anisotropic failure theories. The first-quadrant 
failure surfaces obtained indicate that the yield behaviour of polypropylene in both isotropic and 
anisotropic states is hydrostatic-pressure dependent with the degree of pressure dependency 
increasing with draw ratio. The anisotropic tubes are very weak in the hoop direction compared to 
the axial direction even when biaxially drawn, and yield by rapid circumferential expansion except 
when the applied axial stress is very much greater than the hoop stress. 

1. Introduct ion 
In recent years there have been numerous studies of 
the solid-phase deformation of polymers as a method 
for producing high-stiffness materials in the form of 
rod, sheet and tube. Solid-state deformation in poly- 
mers can be produced by a number of processes such 
as tensile drawing [1, 2], hydrostatic extrusion [3, 4], 
ram extrusion [5] and, recently, die-drawing [6-9]. It 
has been shown that the die-drawing process is prefer- 
able because of the relatively high production rates, 
ease of operation and applicability to nearly all the 
common thermoplastics [9]. Also die-drawing has the 
added advantage of offering scope for incorporation 
into a continuous process (i.e. granules --, continuous 
extrusion of billet ~ die-drawn product). 

As yet, the full potential of drawn polymers cannot 
be utilized since sufficient data and a generally accep- 
ted design procedure have not been established for 
these highly anisotropic materials. Polypropylene 
(PP) flat sheet and tube drawn to various draw ratios 
have previously been tested under uniaxial tensile 
loading conditions [10, 11]. This study indicated that 
the longitudinal elastic modulus and yield stress are 
significantly increased with increasing draw ratio. For 
high draw ratios, flat sheet has a very much higher 
elastic modulus and yield stress than the tube material 
which is usually biaxially drawn to some degree. 

A previous study of the tensile and compression 
plastic deformation of oriented PP sheet [12] showed 
that oriented crystalline polymers may require differ- 
ent yield criteria for different types of stress state. 

Earlier studies [ 13] of polymer rod drawn up to a lim- 
ited draw ratio showed that the yield behaviour of the 
oriented polymer may _be pressure-dependent. In the 
present paper, the effect of draw ratio of die-drawn PP 
tube on the shape and size of the yield surface and on 
the degree of pressure dependency are considered. In 
addition, the first-quadrant yield loci of well-known 
anisotropic yield criteria are compared with the ex- 
perimental results. These yield criteria are first defined 
and the two-dimensional failure surfaces that they 
represent are illustrated for various degrees of strength 
anisotropy and pressure dependency. The materials 
and specimen preparation are then briefly described 
before the test rig and procedure are outlined in some 
detail. The processing of experimental results is then 
covered including the fitting of theoretical yield surfa- 
ces (simplified to three basic models) to the experi- 
mental points. Finally, comparisons are made between 
the results for different draw ratios, particularly con- 
cerning the relative strengths and degree of pressure 
dependency. 

2. Theoretical  yield surfaces 
The following section discusses the significance of and 
differences between the various failure theories pro- 
posed for anisotropic materials. In this context, failure 
is defined as the onset of plastic flow (yield) in the 
material. The well-known anisotropic two-dimen- 
sional yield criteria considered in the present work are 
listed below. 
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2.1. M a x i m u m  st ress  t heo ry  
Failure occurs when 

0"1 = X or 0"2 = Y or "1~12 = S (1) 

where Ol, Oz, z,= are the direct stresses and shear 
stress in the principal material directions and X, Y, S 
are the principal direct failure stresses and shear fail- 
ure stress, respectively. 

2.2. Distort ional  ene rgy  theor ies  
Failure occurs according to one of the following dis- 
tortional energy criteria: 

(a) Hill's theory [14]: 

1 ( ~ ) 2  n t - ( y ) 2 -  ~  "~'-y2 1 2 )  

+ = 1 (2) 

where Z is the transverse (out-of-plane) failure stress. 
(b) Azzi-Tsai theory [15]: 

+ - X~ 5-  + = 1 (3) 

(c) Norris-McKinnon theory [16]: 

+ - X---Y- + = 1 (4) 

or = 1 or = 1 

(d) Fisher theory [17]: 

O102 
= 1 (5) 

where 

El(1 + V21 ) -~- E2(1 + V12 ) 
K 2 = 

2[E1E2(1 + V12)(1 + V21)] 1/2 

is based on the principal in-plane elastic constants. 
(e) Hoffman theory [18]: 

(i) Transversely isotropic material theory: 

(0-2 -- O'10-2) _1_ 0"2 / X  c -- X,~ 
. . . . .  0"1 

x, o x,xo ) 

- -  0 2  = + ~  YtY~ ) + 1 (6a) 

(ii) Orthotropic material theory: 

02 o 2 ( 1  1 1 ) 
. . . . .  0.1 0.2 
XtX~ + Y,Yr ~tX~ + YtY~ ZtZr 

{ X  e -- X,~ ( re_~_ yt~ 
. . . .  01 + 0"2 

+ ~ x t g c  ) \ YtYc ,] 

+ = 1 (6b) 

where Xt, Yt, Zt are direct tensile strengths and Xc, 
Y~, Zr are direct compressive strengths in the 1, 2, 3 
directions, respectively. 
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(f) Caddell et al. theory [12]: 

H ( o l -  0-2) 2 + F ( 0 - 2 -  03) 2 + G(G 3 --O1) 2 

+ 2Nz22 + 2L~23 + 2M'c23 

+ K~G~ + Kr0- 2 + K=G3 = 

where 

1 (7) 

1 1 1 
H + G = - -  F + H -  G + F -  

X~ Xr Yt Yc' Z, Zo' 

Xe -- St  Yc -- Yt Zc - Zt 
K x - XtXc , Ky = E t a ,  Kg-- Z t Z ~  

(g) Modified Marin theory [19]: 

0-2-   0-10-2 (xo- 
XtXc + ~tye q'- \ XtXe }0.1 

+ \ Y, Yr ,} 0" 2 "}- = 1 (8) 

where K2 is defined as for the Fisher theory above. 

2.3. Strength tensor theory  
These conditions can be written in condensed tensor 
notation or expanded as shown below. 

(a) Gol'denblat-Koponov theory [20]: 

X c -  Xt Yc-  Ytt V(Xc + Xt'~ 2 

o, + 2z ro + L\  / o2 

+ \ ~ /  0.~ + 2F120.,0.2 

+ = 1 (9) 

where F12 = 0.5 /(XtXc Yt yo)1/2. 

(b) Tsai-Wu theory [21]: 

Xc -- St Yr - Yt 02 02 

x ,  x---T ~ ' + ~ 2 + + 

( S )  2 + 2F12ol0-2 + = 1 (10) 

where F12 is as for the Gol'denblat-Koponov theory 
above. 

Different degrees of (yield) strength anisotropy are 
illustrated in Figs 1-3 in order to indicate the differ- 
ences between the above failure theories. Fig. 1 shows 
the failure envelopes for the isotropic case when 
Xt = X~ = Yt = Y~ = Zt = Zc. The distortional en- 
ergy theories are identical to the tensor theories with 
F12 = - 0.5/Xt I1,,, because the linear terms in 0-1 and 
0-2 become zero and the 0102 cross-term has a coeffi- 
cient of 1. All theories lie within the maximum stress 
theory boundary in the second and fourth quadrants 
and the Norris and McKinnon theory and the tensor 
theories are contained within this boundary in all 
quadrants. 

Fig. 2 represents the case where the tensile and 
compressive strengths are of different magnitude but 
Xt ~-- Yt ~-- Zt and Xc = Y~ = Z~. Hoffman's envelope 
is identical to that of the modified Marin and tensor 
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Figure 3 Various yield theories in biaxial stress space for anisot- 
ropic, pressure-dependent material (X t = 2 Y~ = 0.4X c = 0.8 Y): 
(A, C) maximum stress theory; (A, D) Norr is -McKinnon failure 
theory; (B) Tsai-Wu theory (F,2 = 0), Gol 'denbla t -Koponov the- 
ory and modified Madn  theory (K 2 = 0); (E) tensor theory 
(F12 = - -  1.0/X t Xe) and modified Marin theory (K 2 = 2); (F) Hoff- 
man theory. 

Figure 1 Various yield theories in biaxial stress space for isotropic, 
pressure-independent material (X t = Yt = Xo = Y~): (A, C) max- 
imum stress theory; (A, D) Norr is -McKinnon failure theory; (E) 
modified Marin theory (K z = 0), tensor theory (F12 = 0) and Hill's 
theory; (B) Azzi-Tsai theory, Hoffman theory, modified Matin 
theory (K 2 = 1), tensor theories (FI2 = --0.5/XtXe) and Fisher 
theory (K 2 = 1). 
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Figure 2 Various yield theories in biaxial stress space for isotropic, 
pressure-dependent material (X, = Y~ = 0.5 X = 0.5 Y'): (A, C) 
maximum stress theory; (A, D) Norr is -McKinnon failure theory; 
(B) Tsai-Wu theory (F12 = 0), Gol 'denbla t -Koponov theory and 
modified Marin theory (K 2 = 0); (F) Hoffman theory, tensor the- 
odes (F12-- - 0 . 5 / X t X )  and modified Marin theory (K 2 = 1); 
(D, H) Fisher theory (K 2 = 1). 

theories (with F~2 = - 0 . 5 / X t X r  because the cross- 
term coefficients are the same. For Hoffman's theory, 
Yt Y~ is assumed equal to Z t Z ~  which eliminates the 
latter. The failure ellipse for these theories falls within 

the maximum stress boundary in three quadrants and 
its origin has moved along the symmetry axis ol  = o2. 

Fig. 3 represents a substantial yield strength aniso- 
tropy (Xt = 2Yt = 0.4Xc = 0.8Yc). In this case, the 
Hoffman and Tsai-Wu envelopes (with 1:12 = 

- 1 .O /X tXe )  are dissimilar since the cross-term coef- 
ficient of the latter equation is twice that of Hoffman's, 
but the differences only become marked in the third 
quadrant. It can be seen from Fig. 3 that some theories 
have lost their smooth transition between quadrants, 
and the origins of the elliptical envelopes have suffered 
translation although this no longer occurs along the 
symmetry axis cr~ = or2. 

3. Experimental procedure 
3.1. Materials and specimen preparation 
The material investigated in the present work is highly 
oriented polypropylene tube (ICI grade GSE 108) 
produced from tubular billets on a hot die-drawing rig 
designed and built in the Physics Department of Leeds 
University. In addition to a high axial drawing ratio, 
some of the tubes were slightly drawn in the hoop 
direction by using a mandrel with a diameter larger 
than the bore of the tubular billet. The degree of 
material deformation is characterized by the actual 
axial and hoop drawing ratios Ra and Rh which can be 
expressed in terms of the initial and final dimensions 
of the product as follows I-8]: 

(D~ -- D~)b (Do + Di)p 
R. - Rh = 

(02 -- D2)p (Do + D,)b 

where Do and Di are the actual external and internal 
diameters, respectively, and subscripts b, p refer to the 
initial billet and final product, respectively. In the 
present work, billets with Do = 26.0mm and 
Di = 18.5 mm were used throughout. Final product 
dimensions are shown for each group of specimens in 
Table I along with the corresponding axial and hoop 
draw ratios. Group I represents undrawn (assumed 
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T A B L E  I Summary of results 

Group Final product Draw ratios 
No. dimensions (ram) 

D~ D O R~ R h 

Uniaxial yield stress Model 1 Model 2 

(MPa) (C 1 = C 2 = 1) (C o = 1) 

Xt Yt Co C1 C2 

1 34.1 32.2 1.0 1.0 
2 24.0 20.2 2.3 1.0 
3 30.0 29.0 5.1 1.3 
4 26.0 25.0 6.8 1.1 
5 44.5 44.0 7.9 2.0 
6 36.0 35.4 9.5 1.6 

10.5 11.0 1.20 0.91 1.65 
13.8 11.5 1.40 0.66 0.60 
30.0 15.7 1,96 0,58 0.70 
41.2 16.2 3,34 0.20 0.40 
44.0 17.9 2,23 0.48 0.65 
48.8 16.9 3,81 0.14 0.14 

isotropic) tube material of dimensions as shown which 
was tested in the same manner as the drawn product 
for comparison purposes. In all case, specimens of 
length 180 mm were cut from the tubular product. 

3.2. Test  t e c h n i q u e s  
A flexible test rig specifically designed for both 
uniaxial and biaxial tests of polymer tube specimens 
[10] was used in the present experimental work. The 
loading frame is shown in Fig. 4. The uniaxial longitu- 
dinal tensile test was conducted by supplying oil at 
a controlled rate to an upper hydraulic cylinder (not 
shown), the axial force from which was transmitted 
through the tensile bar (with the fixing plate removed) 
to the mounted specimen. The hoop uniaxial loading 
test was conducted by using the fixed-end test ar- 
rangement shown in Fig. 4 and directing the oil to 
internally pressurize the tube. In this test, the top end 
of the tube is free to slide over the end cap which is 
held rigidly in place so that negligible longitudinal 
load is applied. In some cases, where the tube was very 
flexible because it was so thin, two initially loose- 
fitting Jubilee clips were used to keep the end of the 
tube in contact with the O-ring seal of the upper 
end-cap. This minimized oil leakage past the seal 
whilst allowing the specimen to slide freely over the 
end-cap. 

The tube specimen was biaxially loaded by applying 
internal pressure and axial tensile load simultaneously 
from the same hydraulic supply. The axial/hoop stress 
ratio R in the tube wall therefore depends on the size 
of the hydraulic loading cylinder and the tube dimen- 
sions. Three tensile loading cylinders with inner dia- 
meters of 25, 50 and 90 mm were available which 
provided three values of stress ratio R for each speci- 
men size. Two further values of R were obtained 
without using the tensile loading cylinder. Firstly, 
a stress ratio of 0.5 was achieved by internally pressur- 
izing the tube (with clamped ends) while allowing the 
tensile bar to move freely. Secondly, a stress ratio 
R = v,0, where %o is the Poisson's ratio in the 
axial-hoop plane of the tube, could be achieved by 
completely constraining the tube ends during internal 
pressurization. This loading configuration is shown in 
Fig. 4 where two Jubilee clips are used to clamp the 
top end of the specimen to the end-cap which in turn is 
rigidly fixed to the middle plate of the test rig. 

The rig is computerized so that, using strain gauges 
mounted on the outside surface of the specimen to 
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Figure 4 Tube test rig. 

monitor the strain, the test could be under maximum 
principal strain-rate control. All tests were conducted 
at maximum principal strain rates of 120-200 s -1, 
room temperature and atmospheric pressure. Hydrau- 
lic pressure and hoop and axial strains were monitored 
throughout each test using a data acquisition system 
installed on an IBM PC. Where possible, at least four 
specimens of each group were tested under each con- 
dition to allow for scatter in the results. 

4. Results and discussions 
4.1. Processing of experimental results 
For all test conditions, the axial and hoop stresses in 



the tube, o ,  and CYo respectively, are proportionally to 
the hydraulic pressure p: 

(Y, = Z i P  (Y, = Z 2 p  (11) 

The value of the proportional constants Z~ and 
Z2 depends on the loading conditions. Thus, for 
uniaxial longitudinal loading 

Z1 = A/r~Dt Z 2 = 0 (12) 

where A is the cross-sectional area of the hydraulic 
cylinder and D, t are the tube specimen mean diameter 
and thickness, respectively. For uniaxial hoop loading 

Z1 = 0 Z2 = D/2 t  (13) 

For biaxial loading using the hydraulic cylinder to 
apply the axial load, we obtain 

D A D 
Z 1  = 4t + ~ - t  Z 2  - -  2t (14) 

For biaxial loading with free end conditions (R = 0.5) 

Z~ = D/4 t  Z2 = D/2 t  (15) 

Finally, for fixed ends (R = %o) 

Z~ = %oD/2 t  Z 2 = D/2t  (16) 

Since o , ,  o0 are principal stresses compared with 
which the corresponding radial stress is considered 
negligible, the von Mises equivalent stress O'eq for all 
the above loading conditions is simply 

1/2 
--- p (Z~  + Z~ - Z I Z 2 )  (17) 
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Figure 5 Equivalent stress-strain curves for group 4 drawn tube 
under various axial/hoop stress ratio R. 
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Figure 6 Stress-strain curves for group 5 drawn tube under 
axial/hoop stress ratio R = 2.5. ( ) Equivalent stress-strain, 
(- - -) axial stress-strain, (-- .  ~ hoop stress-strain; (+ )  failure of 
strain gauges. 

The corresponding equivalent strain eeq is defined 
from the measured tube axial and hoop strains e,, e0: 

The above relations (with %o determined from pre- 
vious uniaxial tests of the same draw ratio tube [22]) 
were used to plot CYen versus eeq for all tests. Best-fit 
polynomials were then obtained from each set of test 
data. 

Fig. 5 shows the resulting equivalent stress-strain 
curves under various stress ratios R for specimens of 
axial draw ratio 6.8. It can be seen that, as R increases, 
the material appears stiffer and stronger except when 
R = m (uniaxial longitudinal tension). For R = 0, 0.5 
and 2.2 the material yielded primarily due to hoop 
loading as evidenced by "ballooning" of the tube and 
subsequent decrease of the axial strain gauge readings. 
Thus the stress-strain curve beyond the yield point for 
R = 0.5 in particular is nearly parallel to the hoop 
uniaxial test response (R = 0). Fig. 6 illustrates this 
phenomenon more clearly since it includes axial, hoop 
and equivalent stress-strain curves for a biaxial test 
with R = 2.5. The reason for yield occurring primarily 
due to hoop loading is the low circumferential 
strength of the tube, since it was highly drawn in the 
axial direction only. Only when the biaxial stress ratio 
was raised to 6.5 or more did specimens of this draw 

ratio yield primarily due to longitudinal loading as 
evidenced by rapid axial stretching of the tube. 

Hypothetically, the equivalent stress-strain behav- 
iour for isotropic material at all stress ratios should 
follow the unique uniaxial stress-strain curve. The 
equivalent stress-strain curves for undrawn PP tube 
at various stress ratios R are shown in Fig. 7 from 
which it can be seen that there is relatively little 
difference between the curves at different stress ratios 
compared to the drawn tube results shown in Fig. 5. 
The differences that do exist indicated that the billet 
material is not truly isotropic. 

It is obvious from the typical results presented that, 
as with most polymers, the PP tube does not exhibit 
a well-defined yield point for any of the loading condi- 
tions considered. Therefore, in order to obtain a con- 
sistent and meaningful definition of yield for plotting 
of the biaxial failure surfaces, the 0.5% proof stress 
was determined from each equivalent stress-strain 
curve. This was measured in the usual manner from 
the intercept of the stress-strain curve with a straight 
line parallel to the initial elastic part of the curve and 
passing through 0.5% offset strain. The corresponding 
"yield" pressure can be obtained from this stress using 
Equation 17 and finally the corresponding axial and 
hoop stresses for plotting the biaxial failure surface 
from Equation 11, using of course the appropriate 
values of Z1 and Z2 for the loading conditions. 

4957 



4 0  I i i i i i 

35 
30 ~'=0.73 R=0.O 

R=0.5 / R=oO 
~25  [ R=1.4 / /  

IJ15 

lO 

5 

0 . . . .  i ~ 
0.00 0.01 0.02 0.03 0.04 0.05 0. 6 0. 7 

Figure 7 Equivalent  s t r e ss - s t ra in  curves for g roup  1 u n d r a w n  tube  
under  var ious  ax ia l /hoop  stress rat ios R. 

4.2. Dete rmina t ion  of yield sur faces  
Throughout the following discussion, the uniaxial ten- 
sile and compressive yield stresses are denoted as 
Xt and Xc in the longitudinal direction and Yt and 
Yr in the hoop direction, respectively. Since there was 
no shear stress applied to the tube specimen when 
tested under either uniaxial or biaxial loading condi- 
tions, the longitudinal and hoop stresses ere and ~0 are 
considered as principal stresses o~ and o2, respective- 
ly. 

The influence of the hydrostatic pressure on the 
material yielding behaviour has been considered in 
many yield criteria such as Equations 6 10 by includ- 
ing linear functions of the principal stresses. The coef- 
ficients of these linear terms are dependent on the 
difference between the absolute values of compressive 
and tensile strengths. Early studies [12, 13, 23, 24] of 
the yielding behaviour of isotropic and slightly 
oriented (cold-drawn) polymers indicated that PP and 
many other polymers are pressure-dependent, i.e. their 
yield behaviour is affected by the magnitude of the 
hydrostatic component of stress as shown by differing 
values of yield stress in tension and compression. 
Therefore, it was decided to use the pressure-depen- 
dent criteria to determine the theoretical yield surface 
of best fit to the present experimental data. The ratios 
C~ = Xc /X t  and C2 = Yc/Yt have been introduced to 
these criteria as pressure dependency parameters. 
When Cx = C2 = 1, the material is considered as pres- 
sure-independent; otherwise the material is pressure- 
dependent. Pressure dependency parameters 
C~ = C2 = 1.23 for isotropic PP were obtained by 
Pae [23]. Caddell et al. [13] showed that thin-walled 
tubes machined from slightly cold-drawn PP rod 
(Ra = 1.8) are pressure-dependent with Ct = 0.76 and 
C2 = 0.64. On the other hand, pressure dependency 
parameters ,C1 =0.16 and C2=2.1  for highly 
oriented PP sheet (Ra ~-6.5) were obtained by 
Shinozaki and Groves [25]. These studies in general 
indicate that PP in both isotropic and anisotropic 
states is pressure-dependent, but there is no consensus 
on values for the pressure dependency parameters. 

The yield criterion proposed by Tsai and Wu [21] 
and the modified Marin theory proposed by Franklin 
[19] are considered in the present analysis since they 

can both be simplified to correspond to most of the 
other theories. These criteria have floating constants 
K2 and Ft2 in addition to the pressure dependency 
parameters as shown in Equations 8 and 10, respec- 
tively. The effect of these floating constants on the 
yield surface has been detailed [19-21]. These two 
theories can be generalized in a single form as follows: 

C X 2 o ' 2  
0 2  -]- 12 y t  2 2 - -  C 0 0 1 0 " 2  "Jr X t ( C 1 -  1)(Yl 

+ X ! ( C 1 -  C~2)o2 = C1X 2 (19) 
rt 

where C12 = C 1 / C / a n d  Co is the floating parameter 
which is identical to K2 and 2F~2 in Equations 8 and 
10, respectively. 

Now, for the case of pure biaxial loading with no 
accompanying shear stress, this general form of the 
yield criterion can be reduced to many of the other 
criteria as follows: 

1. If isotropy and pressure independency (Xc = Xt 
= Yc = Yt) prevail, the strengths in the different refer- 

ence directions are equal (i.e. C~ = C12 = 1) and, as- 
suming Co = 1, Equation 19 reduces to the yon Mises 
distortional energy criterion. 

2. In the case of anisotropic material and pressure 
independency ( X c = X t #  Yc= Yt, C 1 = C 1 2 = 1 )  
and assuming Co = 1, Equation 19 reduces to the 
Azzi-Tsai theory [15] given in Equation 3. 

3. If the material is anisotropic and pressure-depen- 
dent and assuming Co --- 1, Equation 15 reduces to the 
Hoffman [18] and Caddell et al. [12] theories given in 
Equations 6a and 7, respectively. 

To predict the yield surface of a material using Equa- 
tion 19, the tensile and compressive strengths and at 
least one biaxial yield stress point must be available. 
The biaxial data are needed to estimate the floating 
parameter Co once C~ and C2 are known. The test rig 
used in the present work was unable to conduct com- 
pressive tests, so it was decided to use curves of best fit 
to the available data in the first quadrant of stress 
space to estimate these parameters. The statistical 
analysis system (SAS) software installed on the AM- 
DAHL computer at Leeds University was used to 
carry out this curve-fitting analysis. Non-linear pro- 
cedures [26] were used which require the algebraic 
form of the equation to be made to fit the data to be 
specified. Three different model criteria based on 
Equation 19 were used: 

(i) model 1 assumes C1 = Cxz = 1 and allows the 
SAS to estimate Co (pressure-independent material); 

(ii) model 2 assumes Co = 1 and allows the SAS to 
estimate C1 and C~2 (pressure-dependent material); 
and 

(iii) model 3 makes no assumptions and all three 
constants Co, C~ and Ca2 are estimated by the SAS. 

Model 3 with three unknown parameters (Co, C~ and 
Ct2) was found to describe unlikely yield surfaces for 
most groups, even in the first quadrant where there is 
much experimental data, so it was not considered 
further in the present work. A comparison between the 
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other two models and the various yield criteria is 
considered in the following discussion. 

Basic yield criteria involved in this comparison are 
the maximum stress theory, the Azzi-Tsai theory and 
the Norris and McKinnon theory. Since the Hoffman 
and Caddell theories include pressure-dependent 
parameters, the results of applying model 2 described 
above are relevant to these theories. On the other 
hand, the modified Marin and Tsai-Wu theories are 
exactly equivalent to model 3. This model has been 
rejected for the current set of test data as the curve- 
fitting exercise produced unlikely yield surfaces�9 How- 
ever, both modified Marin and Tsai-Wu theories can 
also be reduced to either model I or model 2 by 
making the assumption of either pressure-independent 
or pressure-dependent behaviour, respectively. 

Comparisons between predicted and experimental 
yield stress data measured at 0.5% offset strain are 
given in Figs 8 and 9 for the range of drawn products. 
The axes of these figures are the hoop and axial 
stresses which for pure biaxial loading (no torsion) are 
also the principal stresses. For the predicted yield 
surfaces, the longitudinal and hoop tensile strengths 
Xt and Yt were taken as the mean experimental values 
at R = ~ and R = 0, respectively. 

Considering firstly the undrawn tube (Fig. 8a), it can 
be seen that the model 2 criterion produces the best fit 
to the experimental data. Model 1 gives optimistic 
predictions whilst the Azzi-Tsai and Norris and 
McKinnon theories are somewhat conservative and 
the maximum stress criterion even more so. Models 
1 and 2 also give the best fit to the experimental data 
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for the remaining groups of drawn tube (Figs 8b, 8c 
and 9) with, overall, very little advantage to either one. 
The Azzi-Tsai and Norris and McKinnon criteria are 
always conservative as is the material stress theory, 
except perhaps for groups 3 and 5 (Figs 8c and 9). 

From the above discussion, it can be concluded that 
a pressure-dependent anisotropic yield criterion sim- 
ilar to that described by Hoffman [8] and Caddell 
[12] and designated in the present work as model 
2 gives a good fit to the available experimental data. 
This is in line with the results of Caddell et  al. [13] for 
tests on slightly cold-drawn PP rod. However, it 
should be remembered that data in other quadrants of 
stress space are required to accurately determine the 
degree of pressure dependency and that a pressure- 
independent criterion (model 1) gives almost as good 
agreement with the first-quadrant experimental re- 
sults, provided of course that the floating parameter 
Co which is equivalent to K 2 and 2Ft2 in the modified 
Marin and Tsai-Wu theories, respectively, is opti- 
mized. 

4.3. Further d i scuss ion  of results  
Firstly a word regarding the apparent variability of 
some groups of experimental results shown in Figs 
8 and 9. At most a scatter, defined as the maximum 
difference between individual data points and the 
mean result at each stress ratio, of 4- 10% is found in 
some cases. A possible cause of this scatter is error in 
the measurement of the specimen diameter, since most 
specimens tended to be somewhat oval prior to test- 
ing. The tube diameter used to calculate the stress was, 
however, the mean of two diameters measured at each 
end of the specimen using an internal diameter- 
measuring micrometer. In addition, the results for 
groups 5 and 6 initially showed much greater scatter 
(approx. _+ 20%) in the hoop yield stress value when 
the mean tube thickness was used in the calculation. 
After these results were corrected using the local thick- 
ness at which the strain gauge was attached, this 
scatter was reduced to about + 10% as for the other 
groups. 

Table I gives the mean uniaxial yield stress data 
(measured at 0.5% offset strain) for each group of 
specimens. It can be seen that the longitudinal 
uniaxial strength increases dramatically as the draw 
ratio increases. The hoop yield stress is significantly 
increased for groups 3 to 6 which are slightly drawn in 
the hoop direction. The curve-fitting results giving 
Co for model 1 and Ca and C2 for model 2 are also 
summarized in Table I. It can be seen that Co increases 
with increasing axial draw ratio Ra (indicating an 
increased degree of anisotropy) except for group 5, 
where a decrease is shown compared with group 4- 
Values of Ca and C2 shown in the last two columns of 
Table I generally decrease with increasing draw ratio. 
This is an indication that the material is becoming 
more sensitive to hydrostatic pressure (more pres- 
sure-dependent). The exception to the general trend is 
for group 5 where the Ca and Cz values are higher 
than for group 4 which has a lower axial draw ratio. 
This implies that biaxially drawn tube is less sensitive 
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to hydrostatic pressure than uniaxially drawn tube of 
similar axial draw ratio. It therefore seems that hoop 
drawing has the effect of reducing not only the degree 
of anisotropy but also the degree of pressure depend- 
ency caused by axial drawing. 

The model 2 yield surfaces which were found to give 
the best overall fit to the experimental data are shown 
superimposed on the same axes for all groups of speci- 
mens in Fig. 10. The effect of increasing axial draw 
ratio is obviously to elongate the near-symmetrical 
isotropic yield surface towards the axial stress direc- 
tion. For group 2 specimens which are drawn in the 
axial direction only, the yield surface at low stress 
ratios has actually shrunk compared with the iso- 
tropic material. The yield surface for group 4 speci- 
mens lies mainly outside that for group 5 tubes, which 
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have a somewhat higher axial draw ratio but are much 
more highly drawn in the hoop direction. This may be 
because drawing in the hoop direction reduces the 
degree of molecular orientation arising from simulta- 
neous drawing in the axial direction. 

5. Conclusions 
1. The uniaxial tensile 0.5% proof stress of drawn 

polypropylene tube loaded in the longitudinal direc- 
tion increases dramatically with increasing axial draw 
ratio. The increase in the corresponding value for 
uniaxial hoop loading is much more modest because 
the material is not highly drawn in the hoop direction, 
Thus the degree of strength anisotropy increases sig- 
nificantly with increasing axial draw ratio. 

2. Under biaxial tensile loading, gross yield of the 
drawn tube produces large displacements in the hoop 
direction even when the axial stress is much greater 
than the circumferential value (R ~> 1). This further, 
illustrates the relative weakness of the drawn material 
in the hoop direction. 

3. The 0.5% proof stress data when plotted in the 
first quadrant of biaxial stress space are not well 
represented by the simpler anisotropic yield criteria 
such as the maximum stress theory and the Norris and 
McKinnon and Azzi-Tsai theories. The more com- 
plex criteria such as the modified Marin and Tsai-Wu 
theories give much better agreement provided the 
floating parameter is optimized in each case. Best 
overall agreement with the experimental results is 
given by the pressure-dependent criteria due to Hoff- 
man and Caddell. The optimized pressure dependency 
constants in these latter indicate a greater effect of the 
hydrostatic pressure on yield behaviour as the axial 
draw ratio of the PP tubes is increased. 

4. Results such as those presented in this paper 
should enable highly drawn polymers to be specified 
with more confidence and less conservatism for situ- 
ations where the loading is predominantly biaxial 
tension, as in many pressurized pipe and vessel ap- 
plications. 
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